Steam Oxidation Resistant Ceramics for SiC Protection
Northboro R&D Center, Saint-Gobain Innovative Materials, Northboro, MA

Working together to solve your most difficult challenges by engineering high-performance ceramics and refractories.

GOAL
- Enable solar fuel reactors in 1500°C steam
- Need high temp. components such as SiC

Ta₂O₅ stabilizing
- Ta₂O₅ exhibits volumetric phase change at 1400°C but can be avoided with 4% Al₂O₃ addition
- Thermal expansion behavior of stabilized Ta₂O₅ matches SiC well
- Recession performance inferior to SiC at atmospheric pressure, but superior to SiC at 5 atm
- Development of Ta₂O₅ and other environmental barrier coatings (EBC) for SiC is in progress

Proposal: Ta₂O₅ Coating on SiC

Conclusions:
- 4% Al₂O₃ can stabilize Ta₂O₅
- Thermal expansion matches SiC well
- Recession performance inferior to SiC at atmospheric pressure, but superior to SiC at 5 atm
- Development of Ta₂O₅ and other environmental barrier coatings (EBC) for SiC is in progress

Acknowledgements
- Dr. Elizabeth Opila, University of Virginia
- Dr. Chadwick Barklay, University of Dayton Research Institute
- ARPA-E IDEAS Grant (DE-AR0000706) – Dr. G. Soloveichik, ARPA-E Program Director; Dr. B. Abbasi, P. Finch

Summary

Engineered Ceramics partners with you to engineer sustainable solutions for your most difficult problems

- Hexoloy® the ultimate solution in the harshest environments
 - High corrosion and wear resistance
 - High erosion resistance
 - High temperature capabilities
 - Low electrical conductivity

SiRIS/SiSiC radiant tubes
The enhanced solution for high temperature industrial furnaces
- Maximize energy efficiency, reduce power consumption
- Extend service life-time
- Limit maintenance service